STUDIES OF N-FIXING BACTERIA. VII.

CYTOCHROMES OF AZOTOBACTERIACEAE.

By F. J. Moss and Y. T. TCHAN.

[Read 30th July, 1958.]

Synopsis.

Using a reflectance spectrophotometric method, the representatives of the Azotobacteriaceae were studied. For comparison, three Rhizobia and one other, a Gram-positive bacterium, were also studied and compared.

Azotobacter has the highest QO_2 (4000-5000) (P. W. Wilson, 1951). However, Burke (Wilson, 1951) reported that the effect of pO_2 on Azotobacter is independent of the N source and cannot indicate the nature of the mechanism of N fixation. Wilson and Fred (Wilson, 1951) and Bond (1950) found that O_2 is connected with the fixation process of N_2 (by legume-plant-*Rhizobium* symbiosis) but direct participation is not necessarily implied. It is thus interesting to investigate the terminal respiratory oxidation enzymes (cytochromes) of N-fixing bacteria. A more detailed study of the cytochromes of Azotobacter was carried out by Groucher and Kocholaty (1957), who reviewed the literature of the subject. Using a reflectance spectrophotometer, they reported the absorption spectra of some Azotobacter.

The present study compares a wide range of species of *Azotobacter* and *Beijerinckia*. The influence of the presence of NH_4OH which affects the N fixation mechanism (Wilson and Burris, 1947, 1953) is studied in relation to the cytochrome spectra.

Method.

(a) Organisms: Nearly all known species of Azotobacter and Beijerinckia were included in the experiment. For comparison, the three groups of Rhizobium and Serratia marcescens are also included. The classification of Azotobacteriaceae is based on the systematic classification of one of us (Tchan, 1953) combined with Jensen's classification (Jensen, 1955). The cultures were grown on Winogradsky's medium with sucrose, agar, and Mo. For the Azotomonas insigne, $2\cdot5\%$ of glucose was added to the above medium. For medium containing ammonium 5 c.c. of 5% ammonium sulphate was used for 100 c.c. of the medium. Cultures were first grown on the N-free medium for 24 hours in a test tube. They were used for inoculation of larger quantities of medium for experimental work. The organisms were harvested in sterile water after 48 to 72 hours of incubation at 25° C. Their purity was checked by microscopical examination.

(b) Reflectance measurements: The technique used was described by Giovanelli (1947). All the organisms were examined in the reduced state. When oxidized conditions were used, the organisms were washed twice in Winogradsky's medium without sugar and then pure O_2 was bubbled through for several minutes and examined immediately.

Results and Discussion.

(a) General description of cytochrome spectra of Azotobacteriaceae.

Cytochrome absorption maxima from this and other experiments are shown in the table.

The Sorêt band is present in all organisms examined. Smith reported a band at 4400Å for *Azot. chroococcum*. In the present experiment an absorption band at 4800-4840Å was present in all members of the Azotobacteriaceae. This band was particularly strong for *Az. vinelandii* and *Az. agilis*. However, this band may not be related to the green fluorescent pigment of the above two species since *Beij. derxii*

(Tchan, 1957) has a strong green fluorescence but a weak band at this wave-length. The fluorescent pigments of Azotobacteriaceae have been recently studied by Johnstone (1956). This band seems to be absent (or too weak to be detected) from the *Rhizobium* (peanut). The 5050Å band described by Gourcher and Kocholaty was not found. However, one of us (F.M.) has observed the development of a band in this position from *Aerobacter-aerogenes* when an aerated culture was stored at 4°C. overnight. It is suggested that this band is not sufficiently consistent for the purposes of classification.

				100							
		Sorêt		flavin		β		αė		a1a	$a_{3}a_{2}$
Azot. chroococcum—											
(Smith) After several transfers:		428	440		•••	530	••	552	560	590	628
(Smith)		427				522		552		590	
(Negelein and Gerisher)								••	563		632
(Goucher and Kocholaty)		422		••	505	520	••	550	••	590	625
Moss and Tchan		420	480		••	524	••	552-4		590	632
Azot. vinelandii—											
Wilson and Wilson		420	••	••	••	523	••	551	••	••	625
Fujita and Kodama		••	••	••	••	521	531	550	563	590	632
Goucher and Kocholaty	••	420	••		••	525	••	555		••	630
Moss and Tchan		418	••	480	••	522	••	552	••	••	632
+NH ₄		412	••	480	••	525	••	553	•••	••	648
Azot. beijerinckii		••				527		553			630
Goucher and Kocholaty	••	422	••	. • •	••	••	••	••	••		••
Moss and Tchan		420	••	480	••	522	••	554		589	632
(var. acidotolerans)		417	••	.480	••	520	••	554	••	589	632
+NH ₄		416		480	••	523		553		590	633
Azot. macrocytogenes 0-											
Moss and Tchan		422	••	480	••	524	••	557	••	600	632
Azot. macrocytogenes 1-		100		100							
Moss and Tchan		423	••	480	••	526	••	558	••	596	632
+NH ₄	··-	418		480		524	•••	558	••	590	635
Azot. agilis-											
Goucher and Kocholaty	••	427	••		505		530		560	590	625
Moss and Tchan		427	••	480	••	525	•••			590	632
+NH4		420		480	••	534			560	590	636
Azomonas insigne—											
Moss and Tchan		423	••	470	••	522	••	554	••	590	632
$+ NH_4 \dots \dots$		418		480	•••	521	••	556	••	590	632
Beij. indica						、 、					
Moss and Tchan		418	445	480		518		551	••	6	04
Beij. indica var. alba-	1			100							
Moss and Tchan Beij. lacticogens—	••	415	••	480	••	518	••	551	••	6	04
Mora and Tahan		191		190			595	556		509	620
Moss and Tchan		424 418	••	480			$525 \\ 527$	$\frac{556}{555}$	••	598 580	630 630
Moss and Tchan Beij. derxii		424 418		480 480			525 527	556 _. 555		598 589	630 630
		418						•			
Beij. derxii Rhizobium trifolii— Moss and Tchan								•			
Beij. derxii Rhizobium trifolii— Moss and Tchan Rhiz. meliloti—		418 422	 	480 480			527 525	555	 	589 600	630
Beij. derxii Rhizobium trifolii— Moss and Tchan Rhiz. meliloti— Moss and Tchan	··· ···	418		480			527	555		589	630
Beij. derxii Rhizobium trifolii— Moss and Tchan Rhiz. meliloti—	··· ···	418 422	 	480 480	··· .		527 525	555	 	589 600	630 640
Beij. derxii Rhizobium trifolii— Moss and Tchan Rhiz. meliloti— Moss and Tchan Rhiz. cow-peat group (Peanut) Moss and Tchan Moss and Tchan	·· ·· ··	418 422 418	 	480 480 475	••• . •• ••	··· ·· ··	527 525 525	555 555 555	 	589 600 601	630 640
Beij. derxii Rhizobium trifolii— Moss and Tchan Rhiz. meliloti— Moss and Tchan Rhiz. cow-peat group (Peanut) Moss and Tchan Serratia marcescens—	··· ··· ···	418 422 418 418	··· ·· ··	480 480 475 	··· . 	··· ·· ··	527 525 525 523	555 555 555 552	··· ·· ··	589 600 601 604	630 640
Beij. derxii Rhizobium trifolii— Moss and Tchan Rhiz. meliloti— Moss and Tchan Rhiz. cow-peat group (Peanut) Moss and Tchan Moss and Tchan	·· ·· ··	418 422 418	 	480 480 475	••• . •• ••	··· ·· ··	527 525 525	555 555 555	 	589 600 601	630 640
Beij. derxii Rhizobium trifolii— Moss and Tchan Rhiz. meliloti— Moss and Tchan Rhiz. cow-peat group (Peanut) Moss and Tchan Serratia marcescens—	··· ··· ···	418 422 418 418	··· ·· ··	480 480 475 	··· . 	··· ·· ··	527 525 525 523	555 555 555 552	··· ·· ··	589 600 601 604	630 640

TA	ъτ	101	1
$\perp A$	B 1	1.1	1.

Beij. indica and its var. *alba* exhibited a band at 5180Å but not the two other species of the genus (*Beij. derxii* and *Beij. lacticogenes*). No other member of the Azotobacteriaceae or *Rhizobium* possesses this band.

The absorption at 5520-5580Å was obtained with all organisms under examination, but we were unable to observe absorption at 5600-5630Å; *Beij. indica* and its variant *alba* present a band at 5510Å. The absorption band at 5900Å which Goucher and Kocholaty considered as differential of the *chroococcum-agilis* group was observed by us with *Az. beijerinckii* and its variants.

We were able to confirm the presence of a band at 5900Å described by Fujita and Kodama. However, the value of this band for classification of *Azotobacter* has limited value. *Az. macrocytogenes* and *Beijerinckia* and *Rhizobium* present a corresponding absorption band at (5960-6040 Å).

The absorption at 6300Å was present in all those examined except the *Rhiz.* meliloti, *Rhizobium* of the cow peat group, *Beij. indica*, and *Beij. indica* var. alba.

The Rhizobium meliloti has a similar cytochrome spectrum to Beij. indica var. alba, but the cytochrome spectra of other Beijerinckia and Rhizobium are different. The Beij. derxii and Beij. lacticogens have rather similar cytochrome spectra to Azotobacter. Between mutants, variants of the same species, some variation of cytochrome spectra was noticed.

Within the same species the recorded cytochrome spectra vary with the authors. It is probable that the organism used and experimental conditions were not comparable.

Concerning the cytochrome spectra of Azotobacteriaceae, it is not possible at present to group the organisms as suggested by Goucher and Kocholaty unless more information is available. Our experiment does not support Derx's hypothesis, which suggests that *Beijerinckia* may be related to the *Rhizobium*.

(b) The influence of Ammonium on the cytochrome spectrum of Azotobacter.

Wilson (1951) has pointed out that ammonium is completely accepted as a nitrogen source to the exclusion of the nitrogen fixation reaction. It is of particular interest that the addition of NH_4 ion produces *Azotobacter* with a modified cytochrome spectrum. All *Azotobacter* species cultivated in the presence of NH_4 showed a shift of the Sorêt band towards the shorter wave-length. The 6300Å band was generally shifted towards a longer wave-length. There are also modifications of the absorption bands at other wave-lengths but they are not consistent. These modifications become more interesting when the oxidized spectra of cytochromes are compared with those from organisms grown in ammonia. When the organisms were washed and oxygenated, some bands disappeared. A shift of the Sorêt towards the shorter wave-length and 6300Å towards the red was observed. Goucher and Kocholaty made a similar observation.

Nevertheless this aspect of the problem should not be overlooked. If the N fixation is realized by a reduction process of molecular N_2 to NH_3 , it is not impossible to imagine that the cytochromes participate in electron transfer of the reduction reactions. Recent work by Hamilton *et al.* (1957) showed that N_2 appears specifically to oxidize flavins and cytochrome b.

A cknowledgement.

The authors express their thanks to Dr. Giovanelli, of C.S.I.R.O., for the use of the recording spectrophotometer. We are indebted to Misses M. Cunningham, E. Jackson and M. Baird for their technical assistance.

Bibliography.

BOND, G., 1950.—The importance of the oxygen factor in nodule formation and function. Ann. Botany, 15: 95-109.

FUJITA, A., and KODAMA, T., 1954. (See Goucher and Kocholaty.)

HAMILTON, P. B., SHUG, A. L., and WILSON, P. W., 1957.—Spectrophotometric examination of hydrogenase and nitrogenase in Soy bean Nodule and Azotobacter. Proc. Nat. Acad. Sci. U.S., 43: 297-304.

GOUCHER, C. R., and KOCHOLATY, W., 1957.—A comparison of the Cytochrome structure and radiation effects in Azotobacter. Arch. Bioch. and Biophysic., 68: 30-38.

GIOVANELLI, R. G., 1957.—The application of diffuse reflection spectrophotometry to chemical analysis. Aust. J. Exp. Bio. and Med., 35: 143-156.

JENSEN, V., 1955.—The Azotobacter-flora of some Danish water course. Aaert. Botanisk Tidsskrift, 52: 143-157.

JOHNSTONE, D. B., 1956.—The use of a fluorimeter in the characterizations of fluorescing substance elaborated by Azotobacter. App. Microbiol., 5: 103-106.

TCHAN, Y. T., 1953.—Studies of N-fixing bacteria. IV. Taxonomy of genus Azotobacter (Beijerinck, 1901). Proc. LINN. Soc. N.S.W., 78: 85-89.

TCHAN, Y. T., 1957.—Studies of N-fixing bacteria. VI. A new species of N-fixing bacteria. PROC. LINN. SOC. N.S.W., 82: 314-316.

 WILSON, P. W., 1951.—Bacterial physiology. Acd. Press. N.Y. (Biological N-fixation, p. 474.)
WILSON, P. W., and BURRIS, R. H., 1947.—The mechanism of Biological Nitrogen fixation. Bact. Review, 11: 41-73.

WILSON, P. W., and BURRIS, R. H., 1953.—Biological Nitrogen fixation. A reappraisal. Ann. Review of Microbiol., 7: 415-432.